Tides and the sea level - Part 2 ================================ Two weeks ago we calculated the sea level elevation in Stavanger related to tidal motions given the amplitudes, periods and phases of 6 components. We are getting back to that example again, but now we will take a look at some observed data. **Task 1:** First things first, we read from the dataset :download:`stavanger.txt`. For this, we use the function ``read_csv`` from Pandas: .. code:: python import pandas as pd df = pd.read_csv('stavanger.txt', sep=r"\s+") df.keys() This gives us the following output: .. code-block:: text Index(['time', 'ssh', 'anomaly', 'M2', 'S2', 'N2', 'K2', 'O1', 'K1', 'tide'], dtype='object') The ``df`` Dataframe contains hourly dates between 09/2018 and 09/2019 of the observed sea surface height (cm) in Stavanger, its anomaly (ssh - mean) and the tidal elevations (of each component and their summation) that we calculated previously. **Task 2:** To proceed with the comparison between the tidal components and the observed sea surface height, let’s select the first *45 days* of the ``df`` dataset. **Tip**: use the function ``iloc`` from Pandas. .. code:: python import numpy as np t = np.arange(0, 45*24+1, 1) # 45 days df_sm = df.iloc[0:len(t)] df_sm We get the following output: .. raw:: html
time | ssh | anomaly | M2 | S2 | N2 | K2 | O1 | K1 | tide | |
---|---|---|---|---|---|---|---|---|---|---|
2018-09-13 | 00:00:00 | 106.2 | 40.428946 | 14.966470 | 6.650923 | 1.380173 | 1.128245 | 1.367263 | 1.099229 | 26.592303 |
2018-09-13 | 01:00:00 | 105.3 | 39.528946 | 15.634982 | 5.426019 | 2.258865 | 1.173072 | 1.174997 | 0.745735 | 26.413670 |
2018-09-13 | 02:00:00 | 92.5 | 26.728946 | 12.386691 | 2.747218 | 2.592491 | 0.902034 | 0.913493 | 0.341124 | 19.883051 |
2018-09-13 | 03:00:00 | 88.4 | 22.628946 | 6.035344 | -0.667698 | 2.300545 | 0.388111 | 0.598161 | -0.086869 | 8.567594 |
2018-09-13 | 04:00:00 | 79.9 | 14.128946 | -1.827951 | -3.903705 | 1.453475 | -0.230316 | 0.247583 | -0.508908 | -4.769821 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
2018-10-27 | 20:00:00 | 49.2 | -16.571054 | -13.860386 | -2.747218 | 1.269579 | 0.628035 | -0.076464 | 1.341275 | -13.445178 |
2018-10-27 | 21:00:00 | 50.4 | -15.371054 | -8.388605 | 0.667698 | 2.192932 | 1.052723 | 0.288132 | 1.050467 | -3.136652 |
2018-10-27 | 22:00:00 | 54.5 | -11.271054 | -0.815350 | 3.903705 | 2.587127 | 1.193952 | 0.635750 | 0.687655 | 8.192839 |
2018-10-27 | 23:00:00 | 66.2 | 0.428946 | 6.962163 | 6.093717 | 2.357046 | 1.013693 | 0.945905 | 0.277707 | 17.650232 |
2018-10-28 | 00:00:00 | 80.4 | 14.628946 | 12.995547 | 6.650923 | 1.558206 | 0.560485 | 1.200323 | -0.151276 | 22.814208 |
1081 rows × 10 columns